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Insertion of a G-quadruplex or hairpin structure into the 5’ UTR
or poly(A) sequences reduces translation efficiency of the
encephalomyocarditis virus internal ribosome entry site:

a preclinical in vitro study

Yun Ji Kim, So-Hee Hong’

Department of Microbiology, Ewha Womans University College of Medicine, Seoul, Korea

Purpose: Internal ribosome entry site (IRES) elements, present in both viral and cellular messenger RNAs (mRNAs), facilitate cap-independent translation
by recruiting ribosomes to internal regions of mRNA. This study aimed to investigate the impact of inserting G-quadruplex and hairpin structures into the 5'
untranslated region (UTR) and poly(A) sequences on the translation efficiency of the encephalomyocarditis virus (EMCV) IRES, using an IRES-based
RNA platform encoding OX40L, 4-1BBL, and GFP.

Methods: G-quadruplex and hairpin structures, derived from HIV-1 (human immunodeficiency virus type 1) or custom-designed, were synthesized and in-
serted into the ' UTR and poly(A) tail regions of EMCV IRES vectors. These constructs were amplified by polymerase chain reaction, ligated into plasmids,
and transcribed in vitro. B16 melanoma, TC-1 tumor, and HEK293 cells were transfected with these RNA constructs. Protein expression levels were assessed
at 6, 12, and 24 hours post-transfection by flow cytometry and fluorescence microscopy. Statistical analyses employed one-way analysis of variance with the
Dunnett test.

Results: The insertion of G-quadruplex and hairpin structures altered RNA secondary structure, significantly reducing protein expression. In the 5'UTR, the
G-quadruplex nearly abolished OX40L expression (1.18%%0.41% at 6 hours vs. 18.23%%0.16% for control), while the hairpin structure reduced it
(16.29%%1.46% vs. 22.84%+1.17%). In the poly(A) tail region, both structures decreased GFP expression across all cell lines (4.86%%1.35% to 7.27%+0.32%
vs. 39.56%+2.07% in B16 cells).

Conclusion: Inserting G-quadruplex and hairpin structures into EMCV IRES UTRs inhibits translation efficiency, suggesting the need for precise RNA
structure modeling to enhance IRES-mediated translation.
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Introduction

Background

Internal ribosome entry sites (IRESs) are RNA elements that
recruit ribosomes to internal regions of messenger RNAs (mR-
NAs), enabling translation through a cap-independent pathway
[1,2]. IRESs were first discovered in viruses belonging to the Pi-
cornaviridae family, such as poliovirus (PV) and encephalomyo-
carditis virus (EMCV), in the late 1980s [3]. Subsequently, nu-
merous IRESs have been identified in viral and cellular mRNAs

*Corresponding email: shhong13@ewha.ac.kr
Received: April 25,2025 Accepted: May 7, 2025

[4]. During viral infection or cellular stress, various mechanisms
often suppress conventional cap-dependent translation [1]. Un-
der these adverse conditions, viruses and certain cellular mR-
NAs rely on IRESs to maintain protein translation [2]. Com-
pared with cap-dependent expression systems, viral IRES plat-
forms offer advantages such as bicistronic gene expression, cap
independence, and flexible design suitable for therapeutic appli-
cations [5].

The regulation of protein expression is a complex process in-

volving multiple levels of control [6]. Recent studies have empha-
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sized the crucial role of secondary RNA structural elements in
fine-tuning translation efficiency [7,8]. Among these elements,
G-quadruplexes and hairpin structures have gained particular at-
tention due to their ability to improve protein production under
various conditions, such as infection, hypoxia, and DNA damage
[2,3].

G-quadruplexes are 4-stranded helical structures formed in
guanine-rich, single-stranded RNA (ssRNA) sequences. They
function similarly to IRESs and promote cap-dependent transla-
tion initiation [9-11]. The G-quadruplex follows a structural algo-
rithm characterized by the sequence GXN1-7GXN1-7GXN1-
7GXN1-7 (X >3, N represents any nucleotide), consisting of
guanine quartets (G-quartets) surrounded by loop regions [12].
G-quadruplex structures are frequently found in proto-oncogenes
related to cancer, such as c-myc, VEGF, and Bcl-2 [13]. These
structures are thermodynamically stable, easily formed, and con-
tribute to RNA stability [12,14]. Under cellular stress conditions,
G-quadruplex structures help maintain RNA-ribosome interac-
tions, thereby supporting continuous protein translation [10].
They are also well known for influencing gene splicing and en-
hancing the binding of specific transcription factors [10,13]. A re-
cent study has shown that increasing the loop size of G-quadru-
plexes enhances protein translation [6].

The RNA hairpin structure resembles a loop or U-shape and
forms when 2 regions of the same RNA strand base-pair to create
a double helix [15]. Under specific conditions, such as hypoxia
and DNA damage, hairpin structures can enhance start codon
recognition, thereby increasing protein expression [7,16]. Hairpin
structures also contribute to RNA stability by forming stable sec-
ondary structures at mRNA termini, preventing degradation, and
extending RNA half-life, which ultimately enhances overall pro-
tein expression [ 17,18]. Notably, the use of multiple hairpin struc-
tures rather than a single structure yields superior translational
outcomes [17].

Additionally, other studies have demonstrated that the com-
bined use of hairpins and G-quadruplex structures significantly

enhances translation efficiency [6,17].

Objectives

Based on this evidence, in the present study, we designed and
inserted G-quadruplexes and hairpin structures into the EMCV
IRES and assessed changes in the protein expression levels of the
IRES-encoded gene to reveal the effects of these inserted struc-
tures on the translational function of the IRES.
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Methods

Ethics statement
This study constitutes laboratory research, not involving human
subjects. Therefore, neither institutional review board approval

nor informed consent was required.

Design and synthesis of G-quadruplex and hairpin struc-
tures

Plasmids encoding 4-1BBL, OX40L, and GFP, based on the
EMCYV IRES, were used as the backbone, and these vectors were
constructed according to previously described cloning methods
[S]. The G-quadruplex and hairpin sequences were designed
based on human immunodeficiency virus type 1 (HIV-1)-derived
sequences, with fundamental structural details and custom-de-
signed sequences described in Table 1.

All genes for structural design were synthesized by Cosmo Ge-
netech Inc. (https://www.cosmogenetech.com). The inserted
G-quadruplex and hairpin genes were amplified by polymerase
chain reaction (PCR) using the following reaction conditions: 10
ng of plasmid template, 0.5 pL of 10 pmol forward primer, 0.5 pL
of 10 pmol reverse primer, 4 pL of Phusion S x buffer, 0.4 yL of
dNTPs, and 0.2 pL of Phusion enzyme (Thermo Fisher Scientif-

ic; https:/ /www.thermofisher.com).

The following primers were used for PCR:

E-H forward: 5- CCGAATTCTAATACGACTCACTAT -3’
E-Hreverse: 5- CCCCTAGGAATGCTCGTCAAG -3

E-G forward: 5- CCGAATTCTAATACGACTCACTAT -3
E-Greverse: 5- CCCCTAGGAATGCTCGTCAAG-3

E-M1 forward: 5'- CCGTCGACCGATCGTAGTGTAGT-
CAC-3’

E-M1 reverse: - CCGCGGCCGCGCTAGC -3’

E-M2 forward: 5- CCGTCGACCGATCGTAGTGTAGT-
CAC-3'

E-M2 reverse: 5'- CCGCGGCCGCTGGTAATG -3’

E-M3 forward: 5- CCGTCGACCGATCGTAGTGTAGT-
CAC-3'

E-M3 reverse: 5- CCGCGGCCGCCAGGCT -3’

E-M4 forward: 5- CCGTCGACCGATCGTAGTGTAGT-
CAC-3

E-M4 reverse: 5- CCGCGGCCGCCAGGCT -3

The PCR conditions were as follows: initial denaturation at
98°C for 30 seconds, followed by 35 cycles of denaturation at
98°C for 10 seconds, annealing at 55°C for 10 seconds, and exten-
sion at 72°C for 20 seconds. A final extension was performed at
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- .. . thal "“?gth Position of the
Abbreviation Structure Origin Sequence (+linker) (including
T7-Not I) (nt) structural element
5" UTR modification
E-G G-quadruplex HIV-1 CCAGGGAGGCGTGGCCTGGGCG 1488 25-52
GGACTGGGGAGTGGCGAG
E-H Hairpin HIV-1 GGTCTCTCTGGTTAGA CCAGAGAGCC 1824 25-55
Poly(A) tail region modification
E-M1 G-quadruplex Designed GGGAAAGGGUUUGGGAAAGGG 1638 1594-1630
E-M2 G-quadruplex + hairpin - Designed GGGAAAGGGUUUGGGAAAGG 1688 1594-1680
GGAAGATCAAGGCTAGCACCA
UUACCCGCCUUGGGUAAUGG
UUGGUAAUGGGUUCCGCCCAU
UACCA
E-M3 G-quadruplex + hairpin - HIV-1 CCAGGGAGGCGTGGCCTGGG 1678 1594-1670
CGGGACTGGGGAGTGGCGAG
GCTAGCGGTCTCTCTGGTTAG
ACCAGATCTGAGCCTG
E-M4 G-quadruplex + hairpin - Designed + HIV-1 GGGAAAGGGUUUGGGAAAG 1684 1594-1676
GGGCTAGCACCAUUACCCGCC
UUGGGUAAUGGUGGTCTCTC

TGGTTAGACCA GATCTGAGCCTG

Bold text within the "Sequence (+linker)" column indicates the linker region.

nt, nucleotide; UTR, untranslated region; HIV-1, human immunodeficiency virus type 1.

72°C for 1 minute, followed by indefinite storage at 12°C. Ampli-
fied products were analyzed using 2% agarose gel electrophoresis,
and product sizes were verified using a S0 bp DNA ladder (Dyne
LoadingSTAR+50 bp DNA Ladder; Dynebio; http://www.
dynebio.co.kr). Target bands were excised and purified using a gel
cleanup kit. The purified gene fragments were digested with re-
spective restriction enzymes (Enzynomics; https://www.enzy-
nomics.com) at 37°C for 1 hour and 30 minutes, followed by en-
zyme inactivation at 65°C for 30 minutes. After additional purifi-
cation, the amplified genes were ligated into the pALpA__EMCV
IRES vector using T4 ligase (RBC Rapid Ligation Kit, RBC, Tai-
wan) and incubated at 4°C overnight. The ligation products were
transformed into Escherichia coli DHSa (Enzynomics) by heat
shock at 42°C. Ampicillin-resistant colonies were selected and
cultured in LB medium (Duchefa; https://www.duchefa-farma.
com) containing ampicillin (Duchefa). Finally, plasmid DNA was
purified using a Plasmid DNA Miniprep S&V kit (Bionics;
https:/ /www.bionicsro.co.kr). The final plasmids were confirmed

by electrophoresis following digestion with restriction enzymes.
In vitro transcription
DNA templates were linearized using the Notl restriction en-

zyme (Enzynomics). In vitro transcription was performed using

e-emj.org

the EZ(TM) T7 High Yield In-Vitro Transcription Kit (Enzy-
nomics), driven by the T7 promoter. A 1 pg linearized DNA tem-
plate was mixed with T7 transcription buffer, MgCl,, 10 mM
dithiothreitol, enhancer solution, S mM ribonucleoside triphos-
phates, 200 U of T7 polymerase mix, and ultrapure water, reach-
ing a final reaction volume of 20-100 yL. The reaction mixture
was incubated at 37°C for 4-6 hours.

Following transcription, DNA was removed by DNase I
(Promega; https://promega.com) treatment at 37°C for 30 min-
utes. RNA was precipitated using lithium chloride, and dou-
ble-stranded RNA was eliminated via cellulose purification fol-
lowing previously established methods [19]. RNA purity and
concentration were assessed using a NEO-Nabi UV-VIS Nano
spectrophotometer (MicroDigital Co. Ltd.; https://www.md-best.
com). Only samples with 260/230 and 260/280 absorbance ra-
tios > 1.9 were used for subsequent analyses. RNA was mixed
with denaturing dye, heated at 70°C for 10 minutes, and analyzed
by electrophoresis on a 1.5% agarose gel. RNA was stained with
RedSafe Nucleic Acid Staining Solution, and quality was assessed
using the RiboRuler High Range RNA Ladder (Thermo Fisher
Scientific).
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Cell culture

Mouse B16 melanoma (CRL-6475; ATCC; https://www.atcc.
org) and HEK293 cells (Korean Cell Line Bank; https://cellbank.
snu.ackr) were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; GenDEPOT; https:/ /gendepot.com) supplemented
with 10% fetal bovine serum (FBS; Welgene; https://www.wel-
gene.com) and 1% penicillin/streptomycin (Welgene).

Mouse TC-1 tumor cells (CRL-2493; ATCC) were maintained
in RPMI 1640 medium (Welgene) supplemented with 10% FBS
and 1% penicillin/streptomycin. All cells were incubated at 37°C
in a humidified atmosphere containing 5% CO.,.

Transfection

B16, TC-1, and HEK293 cells (7 x 10° cells/well) were seeded
into 6-well plates (SPL; http://www.spllifesciences.com) and cul-
tured in DMEM or RPMI 1640 medium (supplemented with
10% FBS and 1% penicillin/streptomycin) at 37°C with 5% CO,
for 12 hours. After incubation, cells were washed twice with cold
phosphate-buffered saline (PBS) and transfected with S pg of
RNA using Lipofectamine 3000 (Thermo Fisher Scientific) in
Opti-MEM (Gibco, Thermo Fisher Scientific) and serum-free
medium. Protein expression was assessed by flow cytometry and
live imaging using a Leica Thunder Imager (Leica; https://www.

1eica-microsystems.com).

Flow cytometry analysis

Cells were harvested and resuspended in flow cytometry buffer
(PBS containing 1% BSA and 0.01% NaNj). Fc receptors were
blocked by incubation with anti-mouse CD16/32 (TruStain FcX,
BioLegend) at 4°C for 15 minutes. Subsequently, cells were
stained at 4°C for 30 minutes in the dark with antibodies and dye:
anti-mouse CD275 (ICOS Ligand, clone HKS.3, BioLegend),
anti-4-1BBL (CD137L, clone TKS-1, BioLegend), anti-CD252
(OX40L, clone RM143L, BioLegend), and LIVE/DEAD Fixable
Aqua Dead Cell Stain (Invitrogen).

Statistical methods

Statistical significance was evaluated using one-way analysis of
variance followed by the Dunnett post hoc multiple comparisons
test. A P-value less than 0.05 was considered statistically signifi-
cant (P<0.05, P<0.01, P<0.001). Data are expressed as mean +
standard deviation (SD). Analyses were conducted using Graph-
Pad Prism ver. 10.0 (GraphPad Software).
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Results

Design and insertion of G-quadruplex and hairpin struc-
tures in IRES-based vectors: impact on IRES RNA second-
ary structure

In this study, 2 different G-quadruplex and hairpin structures
were employed: one derived from an HIV-1 sequence and anoth-
er custom-designed specifically for this study (Fig. 1A, B). To in-
vestigate the effects of inserting these structures into the untrans-
lated regions (UTRs) of an IRES-based platform, they were inte-
grated into an EMCV IRES-based RNA vector (Fig. 1C). First,
RNA secondary structures derived from HIV-1, previously de-
scribed in earlier studies [13,20], were synthesized and inserted
into the 5' UTR of the EMCV IRES, encoding the co-stimulatory
molecules OX40L and 4-1BBL. These secondary structures were
positioned between the T7 promoter and the IRES sequence
(Fig. 1D, E). The structural elements were directly linked to the
T7 promoter and IRES without a spacer or linker. Structural pre-
diction analyses indicated that inserting the hairpin motif mini-
mally impacted the native IRES structure, whereas inserting the
G-quadruplex significantly altered the RNA secondary structure
(Fig. 1C-E).

To explore the impact of structures located in the 3' UTR on
protein expression, G-quadruplex and hairpin motifs were also in-
serted into the 3' UTR of a GFP-encoding EMCV IRES platform
(Fig. 1F-TI). The secondary structures were placed downstream of
the poly(A) tail, consisting of 100 adenine residues, followed by
an additional 10-nucleotide poly(A) sequence. A 12-nucleotide
linker sequence was also incorporated to ensure proper spatial po-
sitioning of the secondary structures. Hairpin and G-quadruplex
structures with distinct sequences were designed and inserted
into the same location within the 3' UTR (Fig. 1F-I). Despite se-
quence differences between the 2 hairpin and 2 G-quadruplex
structures, structural prediction analyses demonstrated that all in-
serted RNA secondary constructs significantly altered the RNA
conformation compared to the original vector (Fig. 1C, 1F-I).

Reduced protein expression in EMCV IRES-based RNA
platforms facilitated by G-quadruplex and hairpin inser-
tion

To evaluate the impact of G-quadruplex and hairpin structures
on translation efficiency, EMCV-IRES platforms containing these
secondary structures inserted into either the $' UTR or poly(A)
tail region were transfected into various cell lines. The expression
levels of encoded genes such as OX40L, 4-1BBL, or GFP were
then evaluated. First, to assess the effect of structures located in
the 5' UTR, EMCV-IRES encoding OX40L and 4-1BBL with in-
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Fig. 1. Design and positioning of secondary RNA structures inserted into the encephalomyocarditis virus (EMCV) internal ribosome
entry site (IRES) and their resulting secondary structures. (A) Structure of human immunodeficiency virus type 1 (HIV-1) derived
hairpin and G-quadruplex. (B) Structure of designed hairpin and G-quadruplex. (C) Predicted structure of the EMCV IRES-based
RNA platform encoding 4-1BBL, OX40L, or GFP using RNAfold program. (D) Design and predicted 2-dimensional (2D) structure
of the EMCV IRES-based RNA platform expressing 4-1BBL and containing a hairpin structure in the 5' untranslated region (UTR).
(E) Design and predicted 2D structure of the EMCV IRES-based RNA platform expressing 0X40L and containing a G-quadruplex
structure in the 5' UTR. (F-I) Design and predicted 2D structure of the EMCV IRES-based RNA platform expressing GFP and
containing a secondary structure in the poly(A) tail.
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Fig. 2. Reduced protein expression efficiency of encephalomyocarditis virus (EMCV)-internal ribosome entry site (IRES) platforms
containing hairpin or G-quadruplex secondary structures. (A) Time-dependent expression levels of 4-1BBL in B16 melanoma
cells transfected with EMCV-IRES-4-1BB with or without a hairpin in the 5' untranslated region (UTR). (B) Time-dependent
expression levels of OX40L in B16 melanoma cells transfected with EMCV-IRES-OX40L with or without a G-quadruplex structure
in the 5" UTR. (C) Results of flow cytometry 24 hours after transfection of the B16 melanoma cell line with EMCV-IRES-GFP,
with or without structural elements in the poly(A) tail. (D) Live-cell fluorescence imaging of B16 melanoma cells 24 hours
post-transfection with EMCV-IRES-GFP constructs, with (E-M1) or without structural elements in the poly(A) tail (EMCV-GFP).
(E) Results of flow cytometry 24 hours after transfection of the TC-1 cell line with EMCV-IRES-GFP, with or without structural
elements in the poly(A) tail. (F) Results of flow cytometry 24 hours after transfection of the HEK 293 cell line with EMCV-IRES-
GFP, with or without structural elements in the poly(A) tail. NS, not significant. (Continued on the next page.)
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Fig. 2. (Continued; caption shown on previous page).

serted hairpin or G-quadruplex motifs at the 5' UTR terminal
were synthesized. These constructs were transfected into B16
melanoma cells, and protein expression levels were measured at 6,
12, and 24 hours post-transfection. Compared to cells transfected
with the EMCV-IRES construct lacking these secondary struc-
tures, significantly reduced protein expression levels were ob-
served (Fig. 2A, B). Specifically, EMCV-IRES constructs contain-
ing hairpin structures resulted in decreased protein expression. At
6 hours post-transfection, EMCV control exhibited a protein ex-
pression rate (mean + SD) of 22.84% + 1.17%, whereas the E-H
construct displayed a reduced rate of 16.29% +1.46%. At 12
hours, the expression levels were 45.8% +1.21% (EMCV) and
28.13% * 5.2% (E-H), and at 24 hours, they were 26.98% +2.77%
and 13.17% + 3.34%, respectively (Fig. 2A). Notably, insertion
of the HIV-1 G-quadruplex structure at the S' UTR terminal
nearly abolished OX40L expression (Fig. 2B). At 6 hours
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post-transfection, EMCV exhibited a protein expression rate of
18.23% £0.16%, compared with only 1.18% +0.41% for the E-G
construct. At 12 hours, the expression levels were 27.67% + 3.33%
and 3.34% + 1.28%, and at 24 hours, they were 48.5% + 5.19%
and 2.23% + 0.47%, respectively (Fig. 2B).

To determine whether these secondary structures affect protein
expression regardless of their location within the UTRs, hairpin
and G-quadruplex motifs were inserted downstream of the
poly(A) tail in the 3' UTR of an EMCV IRES-based vector en-
coding GFP. These EMCV-IRES constructs were transfected into
B16 melanoma, TC-1 tumor, and HEK293 human embryonic
kidney cells, and GFP expression was analyzed at 24 hours
post-transfection. Consistent with results observed in the $' UTR
experiments, all ssRNA constructs containing secondary struc-
tures at the poly(A) tail terminal of the 3' UTR exhibited signifi-
cantly reduced GFP expression compared to the control EMCV
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IRES (Fig. 2C-F). In B16 cells, the EMCV IRES control exhibit-
ed a protein expression rate (mean+SD) of 39.56% +2.07%,
whereas E-M1, E-M2, E-M3, and E-M4 showed notably lower
expression levels: 6.23% +1.61%, 7.27% +0.32%, 6.6% +0.19%,
and 4.86% + 1.35%, respectively (Fig. 2C). Fluorescence micros-
copy confirmed these findings, showing clearly visible GFP fluo-
rescence only in the EMCV IRES control group, whereas the
E-M constructs exhibited minimal fluorescence, indicating ex-
tremely low protein expression (Fig. 2D). Similar results were
obtained across other cell lines. In TC-1 cells, the EMCV IRES
control showed an expression rate of 23.22% *2.76%, whereas
the E-M1, E-M2, E-M3, and E-M4 constructs exhibited signifi-
cantly lower expression levels: 10.28% £2.59%, 9.13% +1.37%,
9.57% +1.26%, and 10.35% * 1.82%, respectively (Fig. 2E). Like-
wise, in HEK293 cells, the EMCV control exhibited protein ex-
pression of 24% +1.73%, compared with significantly reduced
levels in E-M1, E-M2, E-M3, and E-M4 constructs: 9.27% +
0.33%, 13.76% +1.52%, 12.5% £0.59%, and 12.09% = 0.2%, re-
spectively (Fig. 2F). These findings consistently demonstrated
that G-quadruplex and hairpin insertions significantly reduce

protein expression across different cell types (Fig. 2C-F).

Discussion

Key results

This study demonstrated that inserting G-quadruplex and hair-
pin structures into the $' UTR and poly(A) region of an EMCV
IRES-based RNA platform significantly alters RNA secondary
structure and reduces protein expression. In the 5' UTR, the in-
sertion of the G-quadruplex nearly abolished OX40L expression,
whereas insertion of the hairpin structure reduced expression to a
lesser extent. In the 3' UTR, both types of structures led to de-
creased GFP expression across B16, TC-1, and HEK293 cell lines,
with expression levels dropping to as low as 4.86% compared to
control constructs. Based on these results, the study suggests that
insertion of G-quadruplex and hairpin motifs reduces translation-
al efficiency in EMCV IRES-based vectors, irrespective of wheth-
er they are positioned within the §' or 3' UTR.

Interpretation/ comparison with previous studies

IRES sequences facilitate cap-independent translation, enabling
the expression of multiple genes from a single mRNA transcript
[S]. This characteristic renders IRES elements valuable tools for
RNA-based therapeutics targeting diverse diseases. In this study,
we inserted RNA secondary structures to potentially increase the
translation efficacy of the EMCV IRES. Previous reports indicat-
ed that RNA secondary structures, such as G-quadruplexes and
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hairpins, enhance RNA stability and translation efficiency [6,21].
In contrast, we observed that the incorporation of these second-
ary structures into the EMCV IRES-based vector resulted in de-
creased translation efficiency. This reduction in protein expres-
sion consistently occurred regardless of whether the structures
were positioned at the §' terminus or downstream of the poly(A)
tail.

One possible explanation for the discrepancy between our find-
ings and previous reports is that the hairpin structure utilized in
our study may have been too small to effectively protect the
mRNA terminus. Additionally, the absence of a spacer sequence
between the inserted hairpin and the IRES element could have
disrupted proper IRES functionality, thereby diminishing transla-
tional efficiency:.

Since numerous translation-associated factors bind to second-
ary structures within the IRES, the insertion of hairpins or G-qua-
druplexes might interfere with factor binding or induce conforma-
tional changes in the 3-dimensional architecture of the IRES-
based platform. This could potentially hinder ribosomal accessi-
bility or compromise the structural integrity of the IRES, resulting

in reduced translation.

Limitations/suggestions for further studies

In this study, our analysis focused exclusively on the EMCV
IRES-based platform because of its previously established excel-
lent translational capabilities. Therefore, further investigations us-
ing alternative viral and cellular IRES elements are needed to de-
termine whether inserting these RNA secondary structures simi-
larly reduces translation efficiency across other IRES platforms.
Generally, IRES-based platforms exhibit lower translation effi-
ciency compared to cap-dependent systems. Therefore, strategies
such as stabilizing the IRES, improving the recruitment of transla-
tion-associated factors, or enhancing interactions between the
IRES and these factors could enhance IRES translation efficiency.
Although RNA structure insertion reduced translation in our cur-
rent platform, the potential of RNA secondary structures to im-
prove translational efficiency still exists. More precise and strate-
gic design and positioning of RNA structures are required to opti-
mize IRES-based platforms.

Implications

Enhancement of translational efficiency through RNA structur-
al modifications could facilitate the development of efficient mR-
NA-based therapeutics, potentially enabling reduced mRNA dos-
ages. This approach may minimize potential side effects and im-
prove cost-effectiveness in therapeutic applications.
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Conclusion

Inserting hairpin or G-quadruplex structures upstream of the 5'
UTR or downstream of the poly(A) tail significantly reduced the
translation efficiency of EMCV IRES-encoded genes. To effec-
tively enhance translation in IRES platforms, precise 2-dimen-
sional or 3-dimensional structural modeling is required to ensure
that inserted RNA structures do not disrupt the native IRES con-

formation.
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