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Shoulder diseases pose a significant health challenge for older adults, often causing pain, functional 
decline, and decreased independence. This narrative review explores how deep learning (DL) can 
address diagnostic challenges by automating tasks such as image segmentation, disease detection, 
and motion analysis. Recent research highlights the effectiveness of DL-based convolutional neural 
networks and machine learning frameworks in diagnosing various shoulder pathologies. Automated 
image analysis facilitates the accurate assessment of rotator cuff tear size, muscle degeneration, 
and fatty infiltration in MRI or CT scans, frequently matching or surpassing the accuracy of human 
experts. Convolutional neural network-based systems are also adept at classifying fractures and 
joint conditions, enabling the rapid identification of common causes of shoulder pain from plain 
radiographs. Furthermore, advanced techniques like pose estimation provide precise measurements 
of the shoulder joint's range of motion and support personalized rehabilitation plans. These automated 
approaches have also been successful in quantifying local osteoporosis, utilizing machine learning-
derived indices to classify bone density status. DL has demonstrated significant potential to 
improve diagnostic accuracy, efficiency, and consistency in the management of shoulder diseases 
in older patients. Machine learning-based assessments of imaging data and motion parameters 
can help clinicians optimize treatment plans and improve patient outcomes. However, to ensure 
their generalizability, reproducibility, and effective integration into routine clinical workflows, large-
scale, prospective validation studies are necessary. As data availability and computational resources 
increase, the ongoing development of DL-driven applications is expected to further advance and 
personalize musculoskeletal care, benefiting both healthcare providers and the aging population.

Introduction  

Background
Shoulder diseases pose a significant health burden on the aging population, affecting millions 

of individuals worldwide [1–3]. Common conditions such as rotator cuff tears, impingement 
syndrome, osteoarthritis, and adhesive capsulitis not only cause pain but also significantly 
impair the daily lives of patients by restricting their mobility and independence [1,4–8]. Timely 
and accurate diagnosis of these conditions is crucial for optimizing treatment outcomes and 
enhancing patient quality of life. However, traditional diagnostic tools, such as X-rays, MRI, 
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and ultrasound, face challenges including variability in interpretation and limited availability in 
resource-constrained environments [9]. Furthermore, these methods struggle to accurately 
and objectively measure joint range of motion, which further compromises their effectiveness in 
diagnosing musculoskeletal conditions [10].

Recent advances in artificial intelligence (AI), especially in the area of deep learning (DL), have 
revolutionized the diagnosis of shoulder diseases [11–14]. DL algorithms leverage artificial neural 
networks, modeled after the human brain, to process and analyze vast amounts of data with 
exceptional accuracy [15]. These algorithms can detect subtle patterns in medical images that 
may be overlooked by even experienced radiologists. They also analyze complex movements 
and postures through pose estimation techniques. By minimizing diagnostic errors, improving 
consistency, and facilitating detailed motion analysis, DL algorithms are widely applicable in imaging 
and movement assessment, transforming sectors like healthcare, rehabilitation, and biomechanics.

Objectives
This paper aims to explore recent studies on the application of DL in diagnosing shoulder 

diseases in older adults.

Ethics statement  

As this study is a literature review, it did not require institutional review board approval or 
individual consent.

The analysis of rotator cuff muscles/tendons and fatty 
infiltrations using artificial intelligence  

In 2020, Taghizadeh et al. introduced an AI model specifically designed to automatically 
assess rotator cuff muscle degeneration by analyzing both atrophy and fatty infiltration in CT 
images [14]. This model utilized a convolutional neural network (CNN) to automatically evaluate 
degeneration, including atrophy and fatty infiltration, in preoperative shoulder CT scans of 
patients with glenohumeral osteoarthritis. The CNN was tested on retrospective data from 103 
CT scans and achieved Dice similarity coefficients that were comparable to those of manual 
radiologist segmentations. It demonstrated high accuracy in measuring atrophy (R²=0.87), fatty 
infiltration (R²=0.91), and overall degeneration (R²=0.91). These findings highlight the potential of 
DL to provide efficient and reliable evaluations of rotator cuff muscles preoperatively.

Similarly, Ro et al. developed a DL framework that utilizes MRI to evaluate factors such as 
the occupation ratio and fatty infiltration in the supraspinatus muscle of patients with rotator 
cuff tears [12]. This study employed a deep-learning framework to analyze the occupation 
ratio and fatty infiltration in the supraspinatus muscle using shoulder MRI. A full CNN facilitated 
rapid and precise segmentation of the supraspinatus muscle and fossa, achieving high Dice 
similarity coefficients (0.97 for the fossa and 0.94 for the muscle) along with excellent sensitivity 
and specificity. Fatty infiltration was quantified using a region-based Otsu thresholding 
method, which revealed significant differences across Goutallier grades (P<0.0001) [16] and 
demonstrated a moderate negative correlation with the occupation ratio (ρ=−0.75, P<0.0001) 
[17]. These findings indicate that integrating DL with automated thresholding techniques offers 
an objective and efficient means of quantifying key indices in shoulder MRI, thereby enhancing 
diagnostic accuracy and consistency.
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Detection of shoulder pathologies including rotator cuff tears  
and fractures

Recently, DL technology has been employed to automate the segmentation and detection of 
rotator cuff tears using MRI.

Lee et al. developed a DL model utilizing a 3D U-Net CNN to detect, segment, and visualize 
rotator cuff tear lesions in three dimensions using MRI data from 303 patients [18]. The model, 
trained and validated on labeled MRI datasets, demonstrated robust performance. It achieved a 
Dice coefficient of 94.3%, a sensitivity of 97.1%, a specificity of 95.0%, a precision of 84.9%, an 
F1-score of 90.5%, and a Youden index of 91.8% (Fig. 1). 

Hashimoto et al. assessed the diagnostic capabilities of a CNN in detecting and classifying 
rotator cuff tears, using 1,169 anteroposterior shoulder radiographs. These were categorized into 
four groups: intact, small, medium, and large-to-massive tears [19]. In binary classification tasks, 
the CNN achieved a sensitivity of 92%, a specificity of 69%, an accuracy of 86%, and an area 
under the receiver operating curve (AUC) of 0.88. The CNN outperformed orthopedic surgeons 
in both detection and classification accuracy, demonstrating its potential as a reliable tool for 
diagnosing rotator cuff tears from plain radiographs.

A recent meta-analysis demonstrated that AI could perform comparably to clinicians in 

A

B

Fig. 1. Segmentation results corresponding to the rotator cuff tear site. (A) Original MRI images displaying the presence of a rotator cuff tear. (B) The 
red region represents the area manually labeled by shoulder specialists, while the blue region indicates the area segmented by the proposed deep 
learning model.  Adapted from Lee et al. [18] with CC-BY.
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detecting fractures, highlighting its potential for broader applications in orthopedics. Magnéli et 
al. developed and evaluated a CNN for classifying fractures in shoulder radiographs, focusing 
on proximal humeral fractures (PHF) based on the AO/OTA classification system, with secondary 
objectives for diaphyseal humerus, clavicle, and scapula fractures [20]. The CNN, trained on 
a dataset of 6,172 examinations, achieved an overall AUC of 0.89 for fracture classification. 
Notably, the AUC for PHF classes exceeded 0.90. The model also demonstrated excellent 
AUCs for diaphyseal humerus (0.97) and clavicle fractures (0.96), and a good performance for 
scapula fractures (0.87). Furthermore, Grauhan et al. developed a model capable of identifying 
a variety of common causes of shoulder pain on radiographs, extending beyond fractures 
to include conditions such as PHF, dislocations, periarticular calcifications, osteoarthritis, 
osteosynthesis, and joint prostheses [11]. This study utilized the ResNet-50 architecture 
to detect common causes of shoulder pain—such as fractures, dislocations, osteoarthritis, 
periarticular calcifications, osteosynthesis, and endoprosthesis—from plain radiographs. Trained 
on 2,700 radiographs and evaluated on a separate annotated dataset, the model demonstrated 
high accuracy. The CNN achieved excellent performance, with AUC values of 0.871 for fractures, 
0.896 for joint dislocations, 0.945 for osteoarthritis, and 0.800 for periarticular calcifications. It 
also detected osteosynthesis and endoprosthesis with high accuracy, achieving AUC values of 
0.998 and 1.0, respectively. Sensitivity and specificity varied by condition, with values of 0.75 
and 0.86 for fractures, 0.95 and 0.65 for joint dislocations, 0.90 and 0.86 for osteoarthritis, and 
0.60 and 0.89 for calcifications. These results underscore the potential of CNNs to aid clinicians 
by prioritizing worklists and improving diagnostic efficiency in high-workload settings.

Detection of local osteoporosis in the proximal humerus  

Li et al. developed a diagnostic method using machine learning to assess local osteoporosis in 
the proximal humerus by analyzing demographic data, bone density, and X-ray ratios [21]. The 
study involved a cohort of 97 patients (76 females and 21 males with an average age of 73 years), 
categorized into groups based on bone density: normal (25 patients), osteopenia (35 patients), and 
osteoporosis (37 patients). Utilizing the modified Tingart index [22], a decision tree was employed 
to identify critical diagnostic indicators, including the humeral shaft medullary cavity ratio (M2/M4), 
age, and sex. An M2/M4 ratio below 1.13 was indicative of local osteoporosis, whereas a ratio of 
1.13 or higher, when analyzed alongside age and sex, helped differentiate between osteoporosis, 
osteopenia, and normal bone density. The decision tree achieved accuracies of 76.27% in the 
training set and 78.95% in the validation set. Additionally, multinomial logistic regression validated 
significant associations of M2/M4, age, and sex with osteoporosis.

Analysis of shoulder range of motion using machine learning  

Measuring shoulder joint angles accurately has been challenging due to the complexity of 
shoulder motion and its intricate rotational axes. Recently, pose estimation, a computer vision 
technique that utilizes machine learning, has garnered significant attention [23,24]. This 
technology predicts the positions and orientations of human joints or key points from images 
or videos, enabling detailed analysis of movements and postures [25]. In a recent study, the 
integration of pose estimation AI with machine learning has demonstrated a promising approach 
to estimating the range of motion of the shoulder with remarkable precision, paving the way for 
advancements in sports biomechanics and rehabilitation (Fig. 2).
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Takigami et al. employed pose estimation AI in conjunction with a machine learning model to 
estimate the internal and external rotation angles of the shoulder [26]. They processed videos of 
10 healthy male volunteers (average age 37.7 years) into 10,608 images to develop parameters 
for training the model. Using smartphone angle measurements as the ground truth, the AI model 
demonstrated a correlation coefficient of 0.971 and a mean absolute error of 5.778 using linear 
regression. With Light GBM, it achieved a correlation coefficient of 0.999 and an mean absolute 
error of 0.945. This method offers a precise and efficient way to measure shoulder rotation 
angles, showing great potential for applications in sports biomechanics and rehabilitation.

Ramkumar et al. validated a motion-based machine learning software development kit 
designed to assess shoulder range of motion. They compared its accuracy with that of manual 
goniometer measurements across four motion arcs: abduction, forward flexion, internal rotation, 
and external rotation [27]. Utilizing a mobile application, 10 subjects each performed the motions 
five times. The software development kit recorded mean angular differences of less than 5° for 
all motions (P>0.05), with specific mean differences of –3.7° for abduction, –4.9° for forward 
flexion, –2.4° for internal rotation, and –2.6° for external rotation. 

Conclusion  

The use of DL in diagnosing shoulder diseases among older patients has shown considerable 
promise in several areas. These include analyzing rotator cuff muscle degeneration, detecting 
pathologies such as rotator cuff tears and fractures, evaluating local osteoporosis in the proximal 
humerus, and accurately measuring the shoulder's range of motion. DL models, which employ 
sophisticated architectures like CNNs and incorporate machine learning algorithms, consistently 
achieve high levels of accuracy, sensitivity, and specificity in medical imaging tasks. These 
models often outperform traditional diagnostic techniques and expert clinicians.
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